Shun Feng
May 26, 2009
AP Statistics, Period 7

## Chapter 16 Summary <br> Random Variables

## Key Knowledge (THE "K"" OF RANDOM!)

- Random Variable- A random variable assumes any of several different values as a result of some random event. Denoted by a capital letter such as X.
- Discrete Random Variable- A random variable that can take one of a finite number of distinct outcomes.
- Example: The number of hours spent driving in any given week.
- Continuous Random Variable- A random variable that can take any numeric value within a range of values. The range my be infinite or bounded at either or both ends.
- Example: The number of days you spent driving to work in any given week.
- Probability Model- The probability model is a function that associates a probability $P$ with each value of a discrete random variable $X$, denoted $\boldsymbol{P}(X=\boldsymbol{x})$, or with any interval of values of a continuous random variable.
- Expected Value- The expected value of a random variable is its theoretical longrun average value, the center of its model. Denoted $\boldsymbol{\mu}$ or $\boldsymbol{E}(\boldsymbol{X})$, it is found (if the random variable is discrete) by summing the products of variable values and probabilities:

$$
\mu=E(\mathbf{X})=\sum \mathbf{x} \cdot \mathrm{P}(\mathbf{x})
$$

- Variance- The variance of a random variable is the expected value of the squared deviation from the mean. For discrete random variables, it can be calculated as:

$$
\sigma^{2}=\operatorname{Var}(\mathbf{X})=\sum(\mathbf{x}-\mu)^{2} \mathbf{P}(\mathbf{x})
$$

- Standard Deviation- The standard deviation of a random variable describes the spread in the model, and is the square root of the variance:

$$
\sigma=\operatorname{SD}(\mathbf{X})=\sqrt{ } \operatorname{VAR}(\mathbf{X})
$$

- Changing a random variable by a constant:
- Adding or subtracting random variables:
$\mathbb{E}(\mathbf{X} \pm \mathbf{Y})=\mathbb{E}(\mathbf{X}) \pm \mathbb{E}(\mathbf{Y})$ and if $\boldsymbol{X}$ and $\boldsymbol{Y}$ are independent,
$\operatorname{Var}(\mathbf{X} \pm \mathbf{Y})=\operatorname{Var}(\mathbf{X})+\operatorname{Var}(\mathbf{Y})$
*Remember, adding or subtracting a constant from data shifts the mean, but does not affect the variance or standard deviation.*

$$
E(X \pm c)=E(X) \pm c \quad \operatorname{Var}(X \pm c)=\operatorname{Var}(\mathbf{X})
$$

Example: Imagine adding $\$ 50$ more a month to the insurance policy

- Multiplying random variables :
*Remember, multiplying each value of a random variable by a constant multiplies the mean by that constant and the variance by the square of that constant.*

$$
\mathbf{E}(\mathbf{a X})=\mathbf{a E}(\mathbf{X}) \quad \operatorname{Var}(\mathbf{a X})=\mathbf{a}^{2} \operatorname{Var}(\mathbf{X})
$$

Example: Imagine multiplying the driver's probability of getting into a second accident by $10 \%$

